Results

Marie Sklodowska-Curie Individual Fellowship No. 798397

The main results of the project are:


1) We developed a practical experimental protocol to completely characterize photon-photon correlations mediated by complex quantum emitters based on a reconstruction of the single- and two-photon scattering matrices of the system. Our procedure is simple as it probes the emitters with one or two weak monochromatic coherent inputs and reconstructs the scattering matrices from standard homodyne or intensity correlations at the output. We showed that the method based on homodyne measurements can be applied to probe many-body quantum systems of emitters with complex level structure, subject to noise and decoherence, and interacting with photons in waveguides, cavities, or free-space. If homodyne detection is not possible, we also designed an alternative method with intensity measurements, which is more restrictive but still useful in many practical nanophotonic settings such as one complex multi-level emitter coupled to a bi-directional nanophotonic waveguide, subjected to decoherence and spectral diffusion.


2) From a theoretical point of view, the protocol we developed establishes a general relation between multi-photon scattering matrices and multi-time homodyne correlations of a quantum scatterer when probed with weak monochromatic coherent fields. This allowed us to develop a powerful new method to numerically calculate single- and two-photon scattering matrices of complex scatterers using a standard quantum optics description of the open quantum system such as input-output formalism, quantum Langevin, and master equations. The generality of this method enables the computation of two-photon scattering matrices and photon correlations in situations inaccessible to standard scattering methods. This includes two-photon scattering on complex many-body open quantum systems subject to decoherence and noise, as it is unavoidable in real nanophotonic platforms, as well as photon scattering under structured nanophotonic environments.


3) An important part of the project was to establish a collaboration with the experimental group of P. Lodahl at the Niels Bohr Institute, Copenhagen, who are experts in building and controlling interactions between quantum dots and photons propagating in photonic crystal waveguides. On the one hand, this allowed us to ensure that the protocol we were designing is simple enough to be implemented with available state-of-art technology. On the other hand, this collaboration lead to the experimental test of the protocol using intensity correlation measurements, which was published in PRL 126, 023603 (2021) (see publication tab). With this we demonstrated the first experimental characterization and isolation of genuine two-photon quantum correlations from a single quantum emitter.


4) The knowledge gained during the project allowed us to develop parallel studies related to probing and characterization of other complex open quantum systems using quantum optics tools. This includes the complete tomographic characterization of QND detectors of superconducting qubits, the design of a synchronized multi-photon source, and the description of quantum noise in driven-dissipative photonic lattices working as topological amplifiers.


The overall work done during the project resulted in 4 published papers, 3 preprints, and one more to be submitted. The complete list of publications is available here. We disseminated the results in 7 international conferences (6 contributed talks and 1 poster), as well as with 4 invited seminars of research groups. Many of the contributed talks were online due to the Covid pandemic, and the records of the talks are available here. Furthermore, the outreach activity “the power of light” was designed and presented in two instances during the Week of Science 2019 in Madrid. A record of the event (in spanish language) is available here.